Icom

IC PS-125

Service Manual

Brief operational description of the Icom PS- $\mathbf{1 2 5}$ power supply

A. Primary DC supply

1. AC input voltage is applied through the AC switch, to input fuse F-1 and filters IF1, IF2, and associated capacitors C1-5, C24 \& C25, through R-2 to the primary rectifier array D-1. Triac Q-1 that is connected across R-2 conducts once the switching supply starts, thus limiting the voltage drop across R-2. A movable jumper from D-1 to the junction of C-9 \& C-10 configures the primary supply for 110 -volt operation as a voltage doubler. For 220-volt operation, this jumper is not connected. The +310 volt DC output voltage of D1 is connected through L2, \& D2 to series connected electrolytic capacitors C-9 \& C-10 which filter the DC output voltage of D-1.

B. Switching supply

1. The output of the primary 310 V DC supply is now applied to series connected power FETs $\mathrm{Q} 4 \&$ Q5 and the primary of high frequency transformer T-1. Switch mode controller IC, HIC-1, drives the gates of Q4 \& Q5. Upon initial power application, Q4 or Q5 will conduct first, thus causing an ac output voltage on all secondary windings of T-1. The voltage of T-1 pins $7 \& 8$ is rectified by D-8, regulated by D-9 \& Q-6 and applied to HIC-1 pin 12 (vcc) to operate HIC-1. The voltage from T-1 pins $9 \& 10$ is rectified by D23, \& filtered by C40 to supply voltage for all IC's and transistors except HIC-1. HIC-1 now begins operating and alternately drives Q4 \& Q5 at a high AC frequency.

C. Secondary DC supply

1. T-1 secondary windings pins $12 \& 13,16 \& 17,14 \& 15,10 \& 11$ and fast recovery diodes D $21 \&$ D22, along with electrolytic capacitors C31,32,33.34.\& 35 form the 25 amp 13.8 volt DC output supply. The output is applied to the output terminals through L-12 \& L-13.
2. The 13.8 Volt DC output is sensed via R-58 to the base of $\mathrm{Q}-11$, the collector of which drives opto- isolator PC-1. Adjustment of VR-11adjusts the base voltage of $\mathrm{Q}-11$ thus establishing via HIC-1, the power supply DC output voltage.
3. IC-11 pins $1,2, \& 3$ sense the voltage drop across R-31 \& R-32 via VR-12 and R-44, to establish via the adjustment of VR-12, the maximum output current limit.
4. Zener diode D-26, Q13, R-48, R-49, PC-2 and associated components detect an over voltage condition of the 13.8 volt supply output.
5. IC-11, pins 5,6, \& 7, Q-14 \& associated components sense temperature rise inside the supply via Thermistor R54 which touches power transformer T-1 and turns on the fan as appropriate.

PS-125 parts list

Item

Q1
Q2
Q3, 12
Q4, 5
Q6
Q13
Q11,14
HIC-1
IC 1
IC 11
IC 12
PC 1, PC 2

Description

TM1641S-L Triac 1
2SC4002 NPN transistor 1
DTC 114E digital transistor 2
FS22SM-9 Power Mosfet transistor 2
2SC3246 NPN transistor 1
2SA733 PNP transistor $\quad 1$
2SC945 NPN transistor 2
MB 2013A switching controller IC 1
S80745 1
LM2904 dip op amp 1
LM 431 precision regulator 1
PS2561 opto isolators 2
D1 R8V1506 Bridge rectifier 1
D2
D3,25,26
D4,5,6
FMN-G12S 200V 5A fast recovery diode

D10,11
D23
15 volt $1 / 2 \mathrm{w}$ zener diode
ISS270A diode

D24
D21, D22
F1
R2
C1, C2
RG1C, 1kv 1A fast recovery diode
2
ERA91-02 diode
7 volt zener diode 1
KCQ60A04 fast recovery power diode
fuse, $5 \times 20 \mathrm{~mm}, 4 \mathrm{~A}(120 \mathrm{~V}) 3 \mathrm{~A}(230 \mathrm{~V})$
ERU5TAK6R8 1.6 W fuse resistor
RS 270-1055 or 270-1054

C1, 2
0.47 uf, 250 V
.0022uf
Panasonic
C3, C4, C11, C18
C5, C37, C38, C41 0.22uf 4
4
C6, C7, C8
76pf
3
C9, C10
1200uf 200 V electrolytic
2
C12
41pf
1
C13, C40
22 uf 50 V
2
C14, C16
470pf 1KV
2
C15, C17
0.56 uf 1 KV

2
C19
100uf 35V
1
C28 0.22 uf $50 \mathrm{~V} \quad 1$
C31, C32, C33, C34 2200uf 35V 4
C35, C36 1000uf 25V 2
C39, C43, C44, C45 0.1uf 50V 4
C42 $0.33 \mathrm{uf} 50 \mathrm{~V} \quad 1$
Fan 12 V DC, $60 \times 60 \times 20 \mathrm{~mm}, 14.5 \mathrm{CFM}(\mathrm{ADDA}) 1$

Note: VR-11 adjusts Output Voltage
VR-12 adjusts Output Current

Authors: Lawrence Young, K4LXV, Dick Knol PA3DUV

110-220 V jumper detail

Icom IC PS-125 Service Manual

Authors: Lawrence Young, K4LXV, Dick Knol PA3DUV

